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ABSTRACT

Authenticating users and securing resources in a distributed system is hard because identity,
ownership and permissions must be kept in sync across all machines in a domain, despite be-
ing intrinsically local properties handled by the various hosts’ kernels. Yet, this is a necessary
first step in piecing together a local-looking virtual system out of multiple remote resources,
which in turn allows one to remove all security and networking concerns from application
source code, improving both security and ease of development. We augmented factotum
with the Guillou-Quisquater protocol and created a userspace server, a PAM module and
a NSS configuration option which, with the already existing plan9port project, effectively
backport large parts of Plan 9’s distributed security model back to Linux. Compared to
existing solutions such as Kerberos, our setup is trivial to install and administrate and now,
one can develop a set of programs as if they would be run locally, but have them run
as processes communicating transparently across multiple computers sharing a consistent
access-control policy.

1. Introduction

Securely sharing resources between users on a monolithic, powerful mainframe has been made possible
by, among others, the UNIX operating system and its descendants. Fine-grained access control is
handled by the kernel on the basis of a user’s identity and groups and of a processes’ and files’ owners,
groups and permissions.

Our IT infrastructure is made up of a few overpowered servers and of many powerful workstations
and laptops (as is most small to midsize institutions’ infrastructure nowadays). We wish our users
could compose their computing environments out of bits and pieces of all the machines on our network,
seamlessly and securely sharing resources as if working on one big virtual mainframe.

We first got by thanks to a progressively heavier use of SSH, which appealed to us with its rock-solid
security, its ability to tunnel any other network protocol and its ease of deployment, configuration and
use. We nevertheless quickly considered a switch to another model because of growing pains such as:

Key management: because in a truly distributed system, every machine is liable to host both client
and server processes, every machine had to know every other host’s key fingerprint and every
user’s public key.

User management: user accounts and groups had to be kept in sync on all devices.

uid mismatch: the same user would have a different uid on different workstations.

Meaninglessness of port numbers: our heavy use of ssh tunneling was made more difficult as we
had to avoid collisions and could not tell at a glance which ports were free and which services
were being tunneled where.

LDAP and Kerberos are obvious choices to alleviate at least the first three pains points we felt
with SSH. We did not, however, make the leap because of the difficulty of setup and administration
and because of Kerberos’ inherent reliance on sharing secrets with the application code, which is much



more likely to leak those secret than code specifically developed for this purpose such as ssh-agent or
factotum. (see subsection 5.6).

Instead, we need a model that would let us keep the two core attributes that dictated the way we
had developed and deployed our application software so far:

Network Transparency: A process gets the impression that all resources it accesses are located on
the same machine as itself. No application code need to care about connecting to a remote
machine or receiving connections from anywhere but localhost.

Security Agnosticism: A server process runs, on the remote machine, owned by the user who will
make all subsequent requests to it from the client machine. Therefore, a server process does not
need to authenticate a user nor to check whether a request is legitimate. This job is delegated
to ssh (the authentication part) and to the server host’s kernel (the access control part).

We turned to the Plan 9 operating system (Pike et al., 1995), whose elegant security model (Cox
et al., 2002) is exactly what we need: it relies on a secure piece of software called factotum to negotiate
authentication between the server process and the client process. Those two processes only have to
forward messages between the user’s factotum and the server host’s factotum, with no care for the
meaning of those messages, thus ensuring that implementing new authentication protocols is simply a
matter of upgrading factotum. This is Security Agnosticism.

Network transparency on Plan 9 comes from the ubiquitous use of the 9P protocol (Pike et al.,
2019), which allow any remote resource to be mounted in the local namespace as a part of the file
system.

As we can dream of neither porting Plan 9 to our diverse hardware nor porting our application
software to Plan 9, we elected instead to backport parts of Plan 9’s security model to Linux. This paper
is a description of our successful, yet still early, work to this end:

vrs (subsection 2.3) We created a privileged daemon called vrs whose role is to start server processes
owned by authenticated users. It ensures the server processes can be Security agnostic and runs
amidst the already existing Plan 9 from user space (plan9port) tools (Cox et al., 2018)
and v9fs (Van Hensbergen and Minnich, 2005) (subsection 2.2), which take care of all the
Network Transparency of our setup.

Pluggable Authentication Modules (PAM) Module (subsection 3.1) We created a PAM module
that handles the conversation between a client’s factotum and the host’s trusted factotum. The
choice of which factotum to trust is therefore part of PAM’s configuration, where one would
expect to find it on Linux. This PAM module also allows any application to authenticate users
with factotum, although we discourage application code from handling security at all.

Name Service Switch (NSS) (subsection 3.3) We modified the factotum from Plan 9 from user
space to serve a passwd and groups file. Once mounted, these files can be pointed to in the NSS
configuration, allowing all machines in the network to share the same user and group database.

Guillou-Quisquater (section 4) To avoid relying on shared secrets, we were able to add support for
the Guillou-Quisquater zero-knowledge interactive proof (Guillou and Quisquater, 1988) with no
particular effort thanks to the clean design of factotum.

2. Network-Transparent, Security-Agnostic servers and clients

2.1. Illustrative example

Figure 1 shows a typical example of what we strive to achieve. The network-wide user alice owns the
machine Atlantis, but she wants to have some files on bob’s machine Bermuda.

alice’s process foo should have to care about neither the fact that the files it accesses are not
actually on Atlantis (network transparency) nor whether alice, its owner, has any rights to those
files (security agnosticism): the kernel should block any illegal action.

It is understood that if bob goes rogue, he can access alice’s files. bob is the owner of all of
Bermuda’s resources, and if she wants to use those resources, alice must trust bob.



Our example deals with sharing actual files located on a hard drive spinning inside Bermuda.
The 9P protocol (Pike et al., 1992, 2019) can intuitively be seen as mapping filesystem operations
(open(),write(), etc.) to network messages whose names begin with T for the request and R for the
response (Topen/Ropen, Twrite/Rwrite, etc.).

Via 9P, Plan 9’s design allow most, if not all, resources to be presented as filesystems and thus
mounted locally from a remote host: keyboard, mouse, and screen, network connections, and even
debugger access to a remote process. As Pike et al. (1992) put it:

files in Plan 9 are similar to objects, except that files are already provided with naming,
access, and protection methods that must be created afresh for objects.

However, even today, twenty one years later, no widely used operating system can expose its host’s
resources in such a unified way. In our real life use-cases, most of the software our users need expose
their functionality as HTTP endpoints speaking JSON or XML.

Nevertheless, we contend that despite its seemingly marginal adoption in the world of linux user-
facing applications, 9P is still a valuable target :

• securely sharing actual files is still problematic (subsection 5.4),

• virtual file systems are slowly making their way into the collective mindset thanks to FUSE
(Szeredi, 2019) (subsection 5.5),

• we are working on tunneling HTTP over 9P (subsection 5.3),

• 9P enjoys very good client support on Linux thanks to v9fs (Van Hensbergen and Minnich, 2005)
and its use in mainstream applications such as QEMU (Jujjuri et al., 2010).

This example will let us explain the role of the existing plan9port tools in the network transparency
of our setup (subsection 2.2) and explain how our new tool vrs is the missing piece in charge of the
security agnosticism (subsection 2.3). We invite the reader to follow these explanations along with
Figure 1 to Figure 6, which use the following conventions:

a host is a rounded corner box with its name in the upper part,

a process is a circle inside a host

a named UNIX socket is a diamond shape tied to a host,

a TCP port is an ellipsis tied to a host,

the kernel is the box on top of the host, while

the filesystem is the box below.

The color illustrates who owns what. alice is blue while bob is red.

A dashed arrow denotes a virtual relationship: one that is made of smaller components.

A solid arrow denotes a direct relationship, with no intermediary party (e.g. it denotes a system call
like listen).
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Figure 1: On alice’s machine Atlantis, a process foo owned by alice accesses alice’s files on
bob’s machine Bermuda as if those files were on Atlantis. Bermuda’s kernel offers the same

protection as Atlantis’s kernel would.



2.2. Network Transparency with plan9port

2.2.1. u9fs owned by alice

We need to translate what foo does to Atlantis’ filesystem into similar actions on Bermuda’s filesys-
tem. Therefore there must exist a process on Bermuda tasked with receiving 9P messages and translating
them into system calls impacting Bermuda’s file system.

The existing u9fs fileserver does exactly that. It was designed to be network-transparent, as it
reads and writes 9P on its standard input and output. In subsection 2.3 we will explain how the u9fs
process is also security agnostic, because it is owned by alice.

This means that Atlantis’ and Bermuda’s kernels must agree on who alice is, including her
numeric uid1, groups, and their numeric gid. In lieu of LDAP, we make both kernels refer to our
modified factotum running on a central authentication server (see subsection 3.3). These components
are drawn on Figure 2.

2.2.2. A factotum dialog

Before u9fs can be started on Bermuda under her identity, alice must authenticate on Bermuda.
Following the Plan 9 security model (Cox et al., 2002), this is just a matter of having alice’s factotum
talk with the factotum Bermuda sees as authoritative.

factotum’s communication and authentication protocols do not require any intermediary to interpret
the messages. Any application intermediary only forwards messages between a factotum client and a
factotum server to perform the authentication. Thus, alice just needs to run a client instance of
factotum to authenticate on Bermuda, see Figure 3

2.2.3. v9fs and srv

To translate foo’s system calls into 9p messages, we use the kernel layer v9fs (Van Hensbergen and
Minnich, 2005), via plan9port’s mount command.

v9fs intercepts system calls made by foo to access the file system, translates them in 9P, then
writes the 9P messages to a socket. Which socket to connect to is decided when invoking the mount
command. Here Figure 4 shows a named UNIX socket on Atlantis.

The 9P response messages read by v9fs from the socket determine the system calls outcomes, with
foo being unaware of all this machinery.

Listening on the socket is the plan9port program srv. It first sends the Tauth message to the
server, then relays messages back and forth between the server and alice’s factotum on Atlantis,
until alice’s factotum tells it to stop.

In a second phase -if the authentication succeeded- srv creates the socket and simply forwards 9P
messages back and forth between the server and whoever (here, v9fs) connects to the UNIX named
socket, as shown in Figure 4.

2.2.4. 9pserve

The TCP socket on Bermuda that Atlantis’ srv connects to is created by the plan9port utility
9pserve. Its man page explains:

[...] the Plan 9 kernel multiplexes the potentially many processes accessing the server into
a single 9P conversation. The user-level server need not concern itself with how many
processes are accessing it or with cleaning up after a process when it exits unexpectedly.
On Unix, 9pserve takes the place of the Plan 9 kernel, multiplexing clients onto a single
server conversation and cleaning up after clients when they hang up unexpectedly.

This ’single server conversation’ can not be directly forwarded to alice’s u9fs on Bermuda. Other
clients, such as one owned by charlie, for example, may be connected to the same port, too. charlie’s
messages need to be forwarded to charlie’s instance of u9fs on Bermuda. Furthermore, 9pserve is
unable to authenticate a connection. It expects the server to handle Tauth messages. See Figure 5

1Plan 9 uses actual strings instead of numbers
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Figure 2: The u9fs process actually making changes in Bermuda’s file system on behalf of foo is
owned by alice. This means that both kernel refer to the same central authority to agree on who

alice is.



Atlantis

alice

factotum

foo

home filesystem

Linux

Linux

⊢ mnt
⊢ fileserver/

⊢ ...

central authority

factotum Bermuda

fileserver (bob)

filesystem

⊢ /home/share
⊢ alice
⊢ charlie

u9fs
identify alice

identify alice

co
nn
ect

auth alice

r/
w
ac
ce
ss

r/w
acc

essr/
w
ac
ce
ss

Figure 3: Authenticating alice on Bermuda is
a conversation between two factotum processes
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Figure 4: srv authenticates alice by relaying information between her factotum and the server, and
then relays 9P messages between the server and the UNIX socket. v9fs talks 9P to the socket to

offer a virtual directory on Atlantis’ file system
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Figure 5: On Bermuda, 9pserve multiplexes multiple clients (only alice is shown here) connections.
Each client access their own server instance.



2.3. Security Agnosticism with vrs

2.3.1. What is vrs ?

On Atlantis, srv first authenticates as alice by relaying messages between her factotum and the
server, and then simply relays 9P messages between the client process foo and the server.

One of our contributions is creating the vrs utility that mirrors this behavior on Bermuda: vrs first
authenticates alice by relaying messages between Bermuda’s trusted factotum and the client, and
then simply relays 9P messages between the client and the server process u9fs. See (Figure 6).

As Figure 6 shows, while the tools from plan9port were enough to ensure the network transparency
of our setup, vrs is needed to ensure its security agnosticism. Whereas there are as many srv as there
are clients, there is only one vrs. vrs’ job is to authenticate each user and start a dedicated instance
of u9fs owned by the corresponding user, then demultiplex the 9P flow coming from 9pserve and
forward the messages to the correct server instance.

2.3.2. vrs implementation

In Figure 7 and Figure 8, we show how three clients, Alice, Charlie and Dave, can send 9P messages to
Bermuda and have their messages processed by each their own Network-Transparent, Security-Agnostic
u9fs instance. We invite the reader to follow this explanation along with the circled letter spots (e.g.

A ) on both figures.
Figure 7 shows three incoming messages:

• Alice’s message is a Tauth, meaning she is not logged in yet. She is starting the authentication
process.

• Charlie’s message is a Tattach, meaning he has been successfully authenticated and is actually
mounting the filesystem on his machine.

• Finally, Dave’s message is a Twrite: After authenticating and attaching, Dave is actually using
the filesystem.

9pserve These messages are partially rewritten by 9pserve, A , so that there is no collision between
the values chosen by the various clients for their:

tag: When it receives an R-message, the tag lets the user know which T-message this R-message is a
response to.

fid: A number that identifies a file. The server-side book keeping number is the qid.

afid The fid given in a Tauth becomes, after a successful authentication, a short-lived capability. It is
called an afid. The server maintains a corresponding aqid.

9pserve maintains a mapping B between incoming and multiplexed tags and (a)fids, in order to edit

and demultiplex the returning R-messages to their correct clients N .

Our new program vrs receives this stream of rewritten messages on its standard input C , being

oblivious to their respective emitters’ location (Network-transparency).
Its job is to make sure these messages are legitimate, and demultiplex them by routing them to the

correct subprocess.

Twrite The simplest example is Dave’s Twrite message. vrs checks that the fid is mapped D to

an active and valid afid E , which means that this Twrite comes after a successful Tauth and Tattach

(and obviously one Topen, and probably some Twalk). It is therefore routed unmodified to Dave’s
subprocess F , as it contains no cryptographic or authentication information.

Similarly, the Rwrite response from Dave’s server I is forwarded unmodified M to Dave, save for

9pserve’s demultiplexing N , according to its mapping B .
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Figure 6: Our tool vrs is needed to ensure the security agnosticism of the server process (here,
alice’s u9fs in Bermuda)



Tattach Upon receiving Charlie’s Tattach message, vrs checks the given afid’s PAM context E (see

subsection 3.1), and, if valid,

• forks G ,

• switches to uid 0, having temporarily dropped root privileges during normal operation,

• switches to charlie’s uid and gid as obtained through NSS (see subsection 3.3), permanently
dropping root privileges in doing so,

• execs the 9P server, the main vrs process still keeping tabs on its standard input and output.

Once Charlie’s server is up and running, vrs’ fid mapping D is updated to map charlie’s attach

fid (here, 3) to its active and valid afid E (here, 1) and to descriptors of charlie’s server’s standard
input and output.

The Tattach message is then stripped of its afid, which is replaced by the special value NOFID,
which tells G the newly started server process for charlie that no authentication is required. Thanks
to vrs, Charlie’s server is security agnostic, but being owned by charlie, it is protected by Bermuda’s
kernel from outside interference and prevented from doing anything illegal.

It is of utmost importance to control the user-chosen afid’s lifecycle. As Cox et al. (2002) put it:

since [an afid] act like a capability, it can be treated like one: handed to another process to
give it special permissions; kept around for later use when authentication is again required;
or closed to make sure no other process can use it.

Its confidentiality during transport is ensured by TLS (see subsection 2.4), and the end of its lifecycle
is dealt with by vrs intercepting any Tclunk message for an afid (as the server would not understand
them anyway, being security agnostic) and unmapping the corresponding afid from E . Any subsequent

request referring to it either directly (Tattach) or indirectly (any other T-message with a fid mapped
to this afid in D ) would fail.

Charlie’s server’s Rattach J is transferred M to Charlie, modified only for the demultiplexing N ,

B of its tag.

Tauth Alice’s Tauth message makes vrs create a new PAM context in its mapping L . The AQID

returned in the Rauth K message will let Alice’s factotum run through its conversation with the
factotum trusted by Bermuda: any subsequent Tread or Twrite messages sent by Alice on fid 0 will be
multiplexed to fid 4 by 9pserve and forwarded by vrs through our PAM module (see subsection 3.1)
to Bermuda’s trusted factotum. vrs stays blissfully ignorant of the content of those read and write
operations, which allowed us to edit factotum to add a new authentication protocol (see section 4)
without modifying anything else.

Until the PAM context switched to SUCCESS, all Tattach on fid 4 will receive an Rerror from vrs.
Until a successful Tattach happens, no server is even started for alice, thus reducing the attack

surface.

2.4. TLS

Because afid are capabilities, 9P messages should not be transmitted in the clear. Yet, so far we
refrained from talking about transport security. The reason is that this would have made Figure 1 to
Figure 6 quite hard to read.

We use stunnel (Trojnara, 2019) to authenticate the server to the client and protect the confiden-
tiality of the 9P messages against eavesdroppers.

On Bermuda, it is stunnel who is actually listening on port 9999. It decrypts the incoming messages
and forward them to 9pserve, who is listening on a UNIX named socket. That way no external attacker
can connect to it, and the name of the socket is more descriptive than a port number.
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Figure 7: 9pserve multiplexes 9P messages from multiple clients to a single conversation with vrs.
vrs handles authentication and demultiplexes the client’s messages to the corresponding network

transparent, security agnostic server.
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On Atlantis, srv is not connecting to port 9999 of Bermuda, but to a named UNIX socket, served
by another instance on stunnel, who is actually connecting to Bermuda.

We installed our own root certificate on all machines, so we can renew a server’s certificate by
simply signing it and installing it on the server machine, without having to tell all the clients about this
change (as we had to when a server’s host key changed when we used SSH).

3. System administration

Configuring a Linux system to trust a central factotum is as easy as establishing a secure connection to
an authoritative server of one’s choosing (we use stunnel for that, see subsection 2.4) and mounting
factotum’s virtual filesytem, e.g. in /etc/factotum/. We use the service managers of our systems
to perform this task at startup.

3.1. PAM and factotum

vrs does not directly forward messages to the server’s trusted factotum. Instead it calls our PAM
module.

This makes implementing vrs a bit simpler, and is the expected way of adding an authentication
mechanism on Linux. The main advantage is that it defers the choice of the authoritative factotum
to the system wide configuration of PAM, where an administrator would expect to find it, and where it
is protected from malicious interference.

This module will communicate with the authoritative factotum by reading and writing in the rpc
file of the directory where factotum has been mounted.

The existence of this PAM module also let other application use factotum as an auth mechanism.
We strongly discourage application code from dealing with security, but if there is no other way, a little
bit of PAM boilerplate is probably the best way to go.

3.2. Factotum

Managing users is a simple matter of maintaining a configuration file of all users and their keys in a
secure location (Plan 9 uses the secstore), and dumping it in the central authority’s factotum’s ctl
file at startup.

Instead of storing secrets in the central authority, we elected to only store the users’ public keys
(see section 4), and have them store their private keys in a secure location, giving them to their own
factotum instance when needed.

The ctl file understands and exposes records as lists of key-value pairs, e.g.:
key proto=p9sk1 dom=anonymous.lan user=alice...
Because vrs uses the p9any protocol, the client and the authoritative factotum will negotiate until a
matching key is found between the client and the server.

Local administrators having access to the ctl file remotely is no big deal, as they only gain read
access. Write access is only for the owner of the factotum process on the central authority server.

3.3. NSS and factotum

The last problem to solve is having all machines synchronize their users and groups database, which
would normally be done by pointing to LDAP in the NSS configuration.

Instead, we modified factotum to make it serve two virtual files: passwd and groups with the
same format as their namesakes in /etc.

These virtual files expose the same information as factotum’s ctl file, in a different format.
We then just use the altfiles module to point NSS to where the authoritative factotum is

mounted.
That way, user management (name, uids, groups, keys, etc.) is done all in one place: by writing

the ctl file of the authoritative factotum (see subsection 3.2).



4. Adding the Guillou-Quisquater ZKIP to factotum

A lot of Plan 9’s file servers use the p9sk1 protocol, which relies on shared secrets held by a trusted
third party, the authentication server. The authentication server uses a file server’s secret to craft tickets
relayed by the client’s factotum to the server to prove the user’s identity.

As a matter of policy, we don’t like relying on sharing secrets. We elected instead to keep using one
RSA key pair per user like we did when using SSH, and have the role of a central authority be endorsed
directly by a factotum process remotely mounted by all server machines which chose to trust it (see
section 3).

factotum already knows about RSA keys. We just added a new protocol that can use them, the
Guillou-Quisquater zero knowledge proof (Guillou and Quisquater, 1988). By adding an RSA private
key to its factotum with the service=gq attribute, a user can authenticate using this protocol to any
service trusting a central authority factotum to which the corresponding public key has been added.

Once both factotums agrees on a key with the service=gq attribute, the client factotum sends
a commitment computed from a random number and the public key to the server. The server answers
with a random number of its own, which constitutes a challenge, and the client then sends a response
computed from the initial random number, the private key and the challenge. The server then checks
that this response is the same as another number computed from the commitment, the challenge and
the response. If so, the client has proved its own knowledge of the private key (or is very, very lucky,
but the process may be repeated) without disclosing information about it.

Thanks to the clean design of Plan 9’s security model, adding this new protocol was just a matter
of modifying factotum. The authentication transactions are sent back and forth unaltered between
both factotum by srv, 9pserve, and vrs (see Figure 6), which therefore need not be altered.

5. Related and future Works

5.1. Setuid

On Linux, a process asking a PAM module before switching its owner is just being courteous. There is
nothing preventing a privileged process from switching its uid at will, which is why giving this power
to application code (more likely to have bugs and security flaws) is a bad idea.

Privileged processes can now use Linux’ capabilities system (same name, but not exactly the same
thing as the capabilities we referred to when discussing 9P) to prevent themselves from doing certain
classes of privileged actions. OpenBSD’s pledge() has a similar aim and in our humble opinion a
cleaner interface. In both cases, if a process can call setuid(), it can setuid to anyone.

Plan 9 is like France on the morning of August 5, 1789 in that privilege does not even exist anymore.
Switching the file server’s owner to alice is done by the host owner’s factotum after she has earned
its trust. factotum writes a capability to a file called caphash and gives it to the server process, which
then writes it to a file called capuse making the kernel changes the server process’ uid to alice.
There is nothing else this capability is good for.

On Plan 9, some servers are not completely security agnostic because they must still use auth’s
functions to switch their identity using this fine grained capability system, but

• the boilerplate is minimal (less than 10 lines, error management included),

• the server gains absolutely no other right than changing its owner to e.g. alice within the
allotted time frame, whereas on Linux it could switch to anyone at anytime and do even more
unless Linux’ capability system is used to restrict its privilege somewhat (an uncommon case so
far in most of the software we use),

• wrappers such as rexexec will switch identity before execl-ling to the truly security agnostic
server.

In practice, some servers expecting UNIX clients or using deprecated forms of authentication such as
telnetd or ftpd are not security agnostic at all. Others (e.g. ctdfs) are completely security agnostic
and their actions will be limited by the kernel, given their owner’s uid.

Plan 9’s elegant capability-based mechanism has been ported to Linux (Ganti, 2008). Were this
to be mainlined, we would use it on our machines and immediately thereafter modify vrs to use this



system and therefore run unprivileged. We then would hunt all remaining privileged software and, if
possible, convert them to use the cap* files as well.

5.2. Namespaces

On Plan 9, processes build their own composite view of the network-wide resources they need. This is
done by mounting the needed services in one’s so called namespace. This namespace is a per-process
property. The ns utility can display the current namespace of a process as a script that can be run
to recreate this namespace elsewhere. The commands are descriptive enough for the output of ns to
also be used as documentation of the process’ setup. Indeed it is almost always the name of a remote
service that is used instead of the port number this service is listening on.

Our heavy use of SSH tunneling and sshfs led to port numbers or mount points conflicts. Port
numbers made setup scripts hard to read and required careful synchronization between clients and
servers.

Our switch to vrs made things a little bit better, as services can be named, making reading setup
scripts easier. Also, plan9port provides the namespace utility, which can reasonably emulate the
toe stepping avoiding functionality of Plan 9’s per process namespace, but can not provide the secure
isolation Plan 9 processes enjoy from one another.

Linux lacks this kind of process isolation. All processes share the same file tree, one has to be
privileged to open a low numbered port, etc. This is being remediated by the slow but growing
penetration of features like linux namespaces, cgroups and containerization. Albeit more awkward
to use than the native namespaces in Plan 9, we think these features are exciting steps in the right
direction.

Sadly, we know from successfully running most of the software our users want on Linux lxzones in
SmartOS, which do not support complex namespace operations, that very few pieces of software make
use of these functionalities, despite them having been introduced more than one decade ago.

Nevertheless, in the last couple of years, we achieved an almost Plan 9-like level of process isola-
tion through the use of GNU Guix Courtès (2013), either as a package manager on top of our user’s
Linux distribution of choice, or as the whole system. In the process of creating a reproducible package
management system, GNU Guix’ creators have made first-class citizens of those seldom-used names-
pace, cgroups, and containerization features of Linux. By prefixing a command with guix shell
--container, or simply using call-with-container in a service description file, one can enjoy on
Linux the same level of process isolation as on Plan 9.

5.3. 9P vs. HTTP

Most of the software our users want expose their functionality through HTTP endpoints. Claiming
RESTful properties (but often failing in subtle ways), when they implement authentication they do so
by authenticating every transaction, awkwardly reimplementing the access control logic already available
to them through the kernel.

We intended to work on a HTTP over 9P bridge, naturally mapping the HTTP endpoint to a file of
the same name, with read calls translated as GET requests, write calls as PUT, POST or PATCH, etc.

Using this bridge, alice can authenticate, attach, walk to a endpoint of interest and open it with
specific rights (read only, for example). The corresponding fid acts as a de facto capability and can
be given away to another process for it to complete a very specific and narrow task, with no access
whatsoever to anything else than what is strictly needed. alice can close the file and thus repudiate
the capability as soon as she wants. This kind of capabilities is more fine grained and easy to use than
any RESTful software access control we have seen in the wild.

On the backend side, if the software can have multiple instances of itself run concurrently on the
same data files, we use vrs as described in this paper. The backend server’s kernel deals with access
control using the usual UNIX file permissions and the software is run security agnosticly.

This case is rare, however, and we more often than not end up having to run a single instance
(typically database software like Postgresql or ElasticSearch do not support running multiple instances
on the same data). Because our users are well behaved we run one instance per project, which gives
them the ability to shoot one another in the foot. The alternative is to either somehow enforce access
control at the bridge level, which increases the complexity of the bridge code and necessitates a way
to tell the bridge about the permissions, or map with each software’s own access control mechanism,
which takes us back to square one.



Despite not getting any work done on this particular topic in the last couple of years, we still think
this is a worthwhile avenue of research.

5.4. Sharing actual files

We tried NFS, AFS, SSHFS and Samba to share files. In terms of security and ease of use, the most
serious contender to the solution exposed here was SSHFS, which we finally rejected because of uid
management. NFS and AFS needs Kerberos (see subsection 5.6) to be secured, there is no AFS server
for OpenBSD (which runs on one of our biggest fileserver) and Samba is very awkward to use without
an Active Directory which we don’t have.

All these solutions are battle tested and solve the file sharing problem day in day out everywhere
across the world.

Comparatively, srv + u9fs may suffer from performance issues (although we have not run into
that yet) and bugs, but are easier to install and expose a truly consistent access control policy to all
users on the network. We are working on a BSD port which is currently at the experimental stage, not
deployed on all our infrastructure.

Because sharing filesystems has become so easy, most of our workflows now rest on spools, sentinel
files, named pipes, etc. Running those workflows locally or in a completely distributed way requires
absolutely no change in the code, just a little bit of setup (mounting the remote resources) beforehand.

5.5. FUSE and 9P servers

The idea of exposing resources as virtual file systems is gaining traction on Linux thanks to FUSE.
Applications such as sshfs or GlusterFS deal with data storage as “normal” files would, other such as
encfs are overlays over data stored on the disk, and finally some other like perkeep (formerly camlistore),
or Plan 9’s plumber and acme expose an API, as modern software usually does nowadays with HTTP
endpoints.

Plan 9 and Inferno are full of virtual filesystems to access things as diverse as e.g. emails, web pages
or Lego Mindstorms. With Inferno especially, those can be started by vrs without having to port them
to UNIX. One just starts, for each client, an embedded Inferno system running the service.

5.6. Kerberos, LDAP and SSH

We argue that our solution is easier to install, configure and administrate than the industry standards,
Kerberos and LDAP. Furthermore, Kerberos is inherently and irremediably flawed in that it requires ap-
plication code to handle security by sharing secrets with the Ticket Generating Service. This application
code is likely not to be always up to date, or to have some flaw that would leak memory, thus granting
an attacker access to a powerful secret.

By contrast, our solution handles security in a small number of well defined places that are suitably
hardened (e.g. factotum will not let itself be debugged, nor will it swap its RAM (Cox et al., 2002)),
while the servers and clients are built as completely security agnostic.

Furthermore, (a)fid are short lived and narrow capabilities, that will grant an attacker a lot less
power than a Kerberos (Ticket-Generating) Ticket should he get ahold of them.

Finally, thanks to our implementation of the Guillou Quisquater protocol, our security may rest on
asymmetric cryptography (our personal preference) instead of sharing secrets, once again limiting the
attack surface.

6. Conclusion

Striving to bring the simplicity and elegance of Plan 9’s security model to UNIX despite the latter’s
inherent limitations, we devised a distributed authentication setup where the only privileged process is
our vrs daemon. This let us push all security and network code out of both client and server software,
and places the burden of access control back on the kernel’s shoulders, where it belongs.

Now, being entirely unprivileged, a buggy or compromised application process is extremely limited
in the damage it can do. Furthermore, application code is now easier to write and configure, because
it need care about neither networking nor security. This in turn reduce the number of bugs an attacker
can exploit.



Through our use of the 9P protocol, application workflows run unmodified whether they are run
locally or in a composite environment made up of resources from all over our network. Our modification
of factotum as a central authority for the user and groups database ensures that the access control
policy is consistent all over the network and that administration is dead simple.

This scheme has been deployed on our institution’s network for weeks. Some applications still require
SSH tunneling, but work is well underway on a HTTP over 9P wrapper, which will bridge the gap and
let us make almost all resources we care about available as 9P servers.

Source code The code and the source of this paper can be found at https://gitlab.com/
edouardklein/vrs

Thanks and Acknowledgements We would like to thank Messieurs les Colonels Duvinage et Nollet,
for letting us enough leeway to work on our research despite pressing operational needs.

We owe a great deal to our friends and colleagues at the C3N, especially Jérôme Hénon, for their
help in setting up the machines, and their willingness to try out strange software from the nineties (to
be fair, a suprisingly high share of our hardware was from the nineties as well ;-).
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